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Abstract: This paper adresses the problem of determining upper and lower bounds for
the effectivity index on the a-posteriori estimate of the error in the finite element method.
These bounds are given explicitly for a certain concrete estimator for linear elements and
unstructured triangular meshes. They depend strongly on the geometry of the triangles
and (relatively weakly) on the smoothness of the solution. An example shows that the
bounds are not over pessimistic. In (4] detailed numerical experimentation is given.
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1. Introduction. Since the first papers by Babuska and Rheinboldt on the a—poste-
riori estimation of the errors in the finite element method [5,6], this subject became an
increasingly important aspect of the application of this method. During the last years sev-
eral codes including different estimators have been developped [14,23,25,26,28] and nowa-
days there are many different estimators in use for a given problem (see, for instance,
[12,13,21,24] and references there in).

A standard measure of the quality of an estimator is the so called effectivity indez

estimated error
eff = ;

true error

For a given problem an estimator is said to be equivalent to the error if the effectivity
index is bounded below and above by two strictly positive constants independently of the
meshsize:

cleff <C;

these constants may depend on the class of functions under consideration. (Here and
thereafter, ¢ and C will denote constants not necessarily the same at each occurrence, but
always independent of the meshsize).

A property that has been considered highly relevant to measure the potential quality
of an estimator is the so called asymptotic ezactness. Roughly speaking, an estimator is
asymptotically exact for a particular problem if its effectivity index converges to one when
the meshsize aproaches to zero.

In the one dimensional case Babuska and Rheinboldt [7,8] made a complete analysis
of asymptotically exact error estimators. For two dimensional elliptic problems, several
estimators have been proved to be asymptotically exact when used on almost uniform
patches of rectangular or triangular meshes, provided the solution of the problem is smooth
enough [2,11,17,18,19].

In particular, for linear triangular elements, some well known local estimators like
Bank-Weiser’s [15] and Zienkiewicz-Zhu’s [31] are asymptotically exact on uniform meshes
as that in Figure 1.1.a but not on other rather uniform meshes as those in Figures 1.1.b
and 1.1.c. (See [19] for Bank-Weiser’s estimator and [9] for Zienkiewicz-Zhu'’s).
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(a) (b) (c)
Figure 1.1

A-posteriori error indicators (i.e.: estimators per element) are employed in adaptive
processes to identify those portions of the mesh with bigger errors in order to generate a
new refined mesh. Usually, the meshes generated by these adaptive processes are regular
(in the sense of a minimal angle condition) but not uniform as in Figure 1.1.a. Very likely,
all the used estimators are not asymptotically exact on the meshes that are adaptively con-
structed. However, the estimators actually in use are equivalent to the error for any regular
family of meshes with bounds on the effectivity index depending only on the regularity of
the mesh. Anyway, in no case these bounds are known explicitly. To increase the accuracy
of the indicators and estimators, various correction factors derived by computational tests
are used.

In this paper we shall analyze a particular estimator based on Babuska-Miller’s [3];
(this type of estimator is used, for instance, in [25]). We shall prove again the equivalence
of this estimator for the Laplace equation, but in such a way that it will be able to compute
asymptotic bounds of its effectivity index in terms of the geometry of the mesh and on
the smoothness of the solution. We shall show that these bounds are sharp and that their
dependence on the geometry of the mesh is optimal. Finally we shall present similar results
for the elasticity problem.

2. The error estimator. Let us consider as our first model problem the Laplace
equation with mixed boundary conditions. Let 2 be a bounded polygon in R? and let
its boundary 99 be split into two parts I'q and I'y (I'q of positive length). Let u be the
solution of the problem

-Au=f, inQ,
(2.1) u=0, only,
=g, onTy,
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where n is the unit outer normal vector to 9Q, f € L%(Q) and g € L%(Ty).

We shall use the standard notation for Sobolev spaces H™(D), their norms || - ||,,, p
and seminorms |- |, . Let Hf () := {ve H(Q): vlp, = 0}. |- |, is a norm on that
space; it is the energy norm of this model problem.

Let {74} be a regular family of triangulations of § (i.e.: the minimal angle of all the
triangles is bounded below by a positive constant, the same for all the meshes); as usual h
stands for the maximal meshsize and we assume that, when the edge of a triangle intersects
09, it is completely contained either in Iy or in I';. The meshes are not assumed to be
quasiuniform.

Let up € V3 := {v e H} (Q) :v|p € Pi(T), VT € Ta} be the piecewise linear finite
element approximate solution of problem (2.1). (Pn(T) denotes the set of polynomial
functions defined on T of degree not greater than m). Let e := u — u; denote the error of
this approximation.

Integrating by parts we obtain for any v € Hf (Q) :

/Ve-Vv=/Vu-Vv—Z/Vuh-Vv=/fv+/ gv— 3u;.
Q Q TGT;. T Q Fn TGT arlT

where for each triangle T, n, is its unit outer normal vector.

Let us call I'; the union of all the interior edges of the triangulation 7. For each edge
¢ C T; let us choose an arbitrary normal direction n and denote the two triangles sharing
this edge Ti, and Ty, where the normal n is outwards T},. Let

Ou
II—B-I_I’!-]] ¢ =V (uthout) ‘mn-=-V (u"ITm) -n

denote the jump of %“;’L accross the edge ¢; this value is independent of the choice of n.

With this notation we may now write the so called residual equation:

(2.2) /ﬂve-vv=/nfv+/n<g—a—"i) +Z/[[a""]]v, Vv € HL () .

Tt Y

This equation relates the error e with the interior residuals f| = — [A(u|p) — A (uanl7)]
the boundary residual (g — "n ) and the jumps of the gradient of the finite element ap-
proximation [%"n‘t] ¢ Several estimators have been obtained by approximating the error as
the solution of this equation [3,15,16,29]. The estimator that we shall consider is a slight

variation of Babuska-Miller’s (3] that Verfiirth describes for the Stokes problem [29)].
For any triangle T € Ty, let E, be the set of its three edges and let

0 fo= o [ f




be the L?(T)-projection of f onto the constants. For any edge € € [y, let

1
Hg==—/g
ol e

be the L?(¢)-projection of g onto the constants. For each edge £ of the triangulation, let

ul],, ifecly,
(2.3) Jei=¢ 2(M,g— %)), ifecCT,,
0, ifecry.

We define as an estimator of the local energy error lely,

X

1
(2.4) mei= |ITFIL ) +5 Y 10777
tEE,

Although we deal with the Laplace model problem, this approach is valid for any
divergence type operator with piecewise constant coefficients if the meshes are such that
the interfaces of the coefficients coincide with boundaries of elements.

3. Equivalence between the error and the estimator. The ideas of Verfiirth
[30] can be directly applied to our simpler model problem to prove the following theorem
without any further assumption on the mesh and for any problem (2.1) with solution

u € HY(Q).

THEOREM 3.1. With the definitions and assumptions of Section 2, there exist two
positive constants C and C' only depending on the regularity of the mesh such that

1

2
31  lehg<C [ > (ni +HITNIf - fllor+ Y lelllg— Hzgllg,e)}

TETh €C(8TNr,)
and
(3.2)
3 3
Me < C' |lel, 5+ ( ST -t )+ S -1z, | |,
T ¢C(aTAr,)

where T := J{T" € T : T and T’ have a common edge} .

Proof. The proof will not be given here because it is essentially identical to that in

[30]. 0




These bounds show that whenever the data f and g are locally smooth, if the error is
properly O(h*) (0 < s < 1), then the estimator

}
(3.3) o 1= (Z rﬁ)

TE
is globally equivalent to the error. In fact, we have the following theorem.

THEOREM 3.2. In addition to the assumptions of Section 2, let us assume that there
exists a triangulation T such that

(3.4) flpe H(T), VT €T
andVT €T : TN, # 0
(3.5) gl, € H\(£), V€ AT Ty ;

let us also assume that all the triangulations 7T}, are refinements of T. .
If there exist constants C* > 0 and s € (0,1] not depending on h such that

(3.6) lel, @ 2 C*Ah,
then there exist two positive constants ¢ and C such that
(3.7 cno < lel; g < Cnq -

Proof. By using (3.1-5), the regularity of the meshes and the standard aproximation
properties of the projections Il f and II, g, we may write

ol <C (nf, Y Y ngﬁ.,)

TeT tecl

where £ := {fedgeof T €T : ¢ CT,}, and

1 1
Na < C' [|€|1,9 +h2(z Iflf'T) +h? (Z IgI:,) ] .

TeT tel

since each T is the union of at most 4 triangles of 7,. Hence, by using (3.6) the theorem
is proved. O




Remark 3.1. The assumptions about the existence of T is made only to cover those
cases where f and g are piecewise smooth and the meshes are such that the interfaces of the
data coincide with boundaries of the elements. On the other hand, these local smoothness
assumptions (3.4) and (3.5) can be weakened; in fact, if f| € H(T) and ¢|, € Hi*e(0)
for some € > 0, then the conclusion of Theorem 3.2 and all what follows are valid. [J

Remark 3.2. The error is always properly O(h®) (i.e.: assumption (3.6) is valid)
except for trivial cases (see [3]). OJ

We shall now describe a variation of Verfiirth’s proof of Theorem 3.1 that will give
computable asymptotic approximations of the constants ¢ and C in the equivalence (3.7)
(assuming slightly stringent hypothesis for the upper bound). In the following sections, we
shall show that the constants obtained in this way are almost achievable.

Let V, := {v € H. () : vl € Pp(T), VT € Tp} (in particular Vi = V;) and, forp > 2,
let u, € V, be the finite element approximate solution of problem (2.1) in this space. Let
ep 1= Up — Up, then

(3.8) lel; o < lu— upli g + lepli g -

It is known [10] that, if u € H'*¢(Q) for some ¢ > 0 and if the family of meshes is
quasiuniform, then

(39) |u - uPILQ S Chmin{p,f}p—€||u||1+6'9 ’

with a constant C' independent of u, A and p. Therefore, if the solution is smooth enough,
say u € H'¢(Q) for some € > 1, |u — upl, o is asymptotically negligible with respect to
the error |e|, o for any p > 2. Instead, if the solution u € H'*¢(Q) for some € € (0, 1], the
error |e; o is expected to be O(h€) and, in this case, |u — up|, o Will be negligible with
respect to |e|; o only for p big enough. In any case, even for h small or for p big enough
(or both together), the term |u — u|, o can be neglected in (3.8). Therefore, it is enough
to bound |e, |, . Now,

(3.10) Iepﬁ Q= / Ve, - Ve, =/ V(up ~u)- Ve, +/ Ve Ve, = / Ve- Ve, ,
' Q Q Q Q
where we have used that e, € V.

For any continuous function v defined on 2, let v/ denote its Lagrange piecewise linear
interpolant on the mesh 7. Since e’{ € Vi, then from (3.10) we have

Ie,,,lf'n = /QVe -V(ep — e{,) ,
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and by using the residual equation (2.2) we may write

leplt,q = /Q flep — ) + /r( 3““)<ep AEDY / [[a"“]] — ¢;)

LCT;
g e[ (5ot 2 []e-4)
=T€T [H f/(e,, ep) + = 15213: Jl/(ep—ep)J +68(ep —el)

where

6(v) = Z/f I f)v+Z/<g—ng

T€ETx £Cly

Using the definition (2.4) of the local estimator 7, and Cauchy-Schwarz inequality we

have:
=] +3 2 [ oo

This last expression allows us to prove the following theorem.

1

2
) ] +|é(ep —eD)] .

)

CGE

B11) el g < Y s [

TET,

THEOREM 3.3. Under the assumptions of Theorem 3.2,

1
2
lely o 5[ Z (C'T’)2 '7:} +lu—upl; g

TeT,
(3.12) + C [hz ( z 'fli,T) + B3 (Z lgﬁ() } ’
TeT tel
where
1 N . 2
(3.13) (C”)z--— su (me(v—v )7 +§Zl€E‘T ‘m J(v—v )l
. T . vGPPR)PO lvlf'T

Proof. According to (3.11) and the definition of C2:

1
2z
leslf @ < ) Clnrlepl, 1+ |6(ep — D) < [Z (c‘;)zni} leply o + [6(ep — €})]

TeT, TeT,




Proceeding as in Theorem 3.2 we prove that

3 3
l6(ep, — D) < C h2(z Iflf,T) +h% (Z lglf.z) } lepliq -

TeT el

So, by using (3.8) we conclude the theorem. O

The constants C? in this theorem depend on the degree p used to make |u — up|, ¢
negligible in (3.12). However the next theorem shows that this dependence is very weak.

THEOREM 3.4. Let C? be defined by (3.13); there exists a constant C. only depending
on the shape of the triangle T such that Vp > 2

1
CP < Crlog?p

Proof. Let T := {(z,y) : >0, y >0, and z +y < 1}. For any polynomial v of
degree p > 2
~ 1A
191l 7, < Clogtp 91, 7
with C independent of ¥ and p; (this is an inmediate consequence of Theorem 6.2 in [1]).
Since (v — 51) vanishes for v € Py, then

-~

v -

< Clog? p|v|

57
”L°°(T) 1,T °

and so, for any v € P,(T'), by changing coordinates to the triangle T we obtain

I 1
lo = "Nl oy < Cr logtp o], 5

with a constant C. only depending on the shape of the triangle. Using this inequality in
the definition (3.13) of C? we conclude the theorem. 0

In the following section we shall compute the costants C? for different values of p and
we shall analyze their dependence on the shape of the triangle T. On the other hand, for
the lower bound in (3.7) we have the following theorem.

THEOREM 3.5. Foreach mesh Ty, let w € H%d(Q) (eventually depending on the mesh)
be such that for all the triangles T € Ty,

(3.14) /T (I, Fw = [T, £)?

(3.15) /Jnv = > e}

(el teE,

10




and
(3.16) BC'T >0 : |w|l'T < C'Tn,, ,

where C’ may depend on the shape of the triangle but not on its size h,.

Then, under the assumptions of Theorem 3.2,

3 3
(3.17)  n, < (;2% C',) {|e|m+ c [h“(jze;lfﬁj) + ki (;wﬁ,) H :

Proof. By using (3.14) and (3.15) in the definition of 7,, the residual equation (2.2)
and the definition of é, we have

1
Y=Y [[T(Hrf)w+§

TET TETh teE,

> /ngw] =/Qve.vu;—5(w)

and hence,

> 02 < ely glwly g + 16(w)] -
TeT,

Now

<C Z \T| |fly 7lwly, 7

TETh

> [T

TET)

> [0 - pu)

TeTy,

and

3
<C S (el lgly ol g, »
{Clq

> /I(g - g)w

LCTy

> /Z(g —II,9)(w ~ I, w)

LCry

where Ty is the triangle in 7, such that ¢ C 9T,. Therefore, by using (3.16), we have

3 3
Y i< {lelm+ C lh"’(Z |f|Z,T) + hi (Z 1g|§,,> ]}|w|1,n
TETy TeT el

3 3 3
< (sup c;) el + C h2(2|f|3,T) +h3 (Zlglf.e> (Z "3)
TeT TeT tec TeTh

and hence we obtain (3.17). 0

In the next section we shall exhibit functions w satisfying the hypothesis of Theorem
3.5 and we shall show how to calculate the constant C!.

11




4. Computation of the bounds. In order to compute the constants C? of Theorem
3.3, let zp € P,(T) be the solution of the weak finite dimensional problem

(4.1) / Vo Vo= — / (v=v1), VoeP,(T)
T 1Tl Jr
and, for i=1,2,3, let z; € P,(T) be the solution of
1
4.2 /Vz;-Vv:-— v—vl , Yv e Py(T),
( ) T \/iw" l.-( ) P( )

where ¢;, 1 = 1,2, 3, are the three edges of T. We may write

(C;’_)2 = sup > izo (Jp Vzi - Vo) = sup Tizo (Jp Vzi- Vo)

2 2
vEP,\Po v} veZ\Po v} r

?

where Z is the subspace of P,(T') spanned by {z,-}?=0.
For v = Z?=o vizi € Z we may write |v|f,T = v'Cv, where v := (vg,...,v3) and
C € R*** is the symmetric matrix of entries C; ; := fT Vz-Vz;,4,353=0,...,3. On the

other hand 3°5_, (J7Vazi- Vv)2 = v*C2yv. Therefore,

212 viCly vtCv
(Cr) = sup tC = sup —
veRt : viCvzo YV LV v#0 V'V

is the spectral ratio of C.

So, to compute the constants for any degree p > 2 and any triangle T, we only need the
solutions z; of problems (4.1) and (4.2). These functions are the p-degree finite element
solutions of elementary elliptic problems on the triangle T with a mesh consisting of this
only triangle; they have been computed by using the code PROBE [27]. Our computations
show that for any triangle T" and for any degree p = 2,3,...,8,

by sin=3 (%) < €7 < R
(4.3) 0.548 log?p sin ’i( 5 ) < CP <0.813 log?p sin ( 5 ) .

where o, is the minimum angle of T'. These constants CP. also depend on the other angles
of T; however this dependence is very weak. In fact, the estimate (4.3) is valid for all the
triangles with minimum angle a,., independently of the size of the other angles.

From Theorem 3.4 we know that for any fixed triangle the constants C? are bounded
above by log‘} p; our computations show that, actually, they are almost proportional to
log‘} p. On the other hand, for a fixed degree p > 2, the constants depend on the geometry;
they essentially depend on the minimum angle and in fact they deteriorate when this angle
is very small, but the square roots in (4.3) makes this dependence to be weak.

12
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Now, we shall describe how to compute the constants C’. of Theorem 3.5. To this
goal we need a function w € H} (Q) satisfying (3.14), (3.15) and (3.16) with constants
C’. as small as possible. We define this function w in each triangle but in such a way that
it satisfies the required global smoothness. For any edge £ of the triangulation we choose
a continuous function 3, vanishing at both ends of the edge and such that its average
c, = l—}-[ Jo¥. # 0. To guarantee that w € H} () we consider only those functions w

whose restrictions to £ are a multiple of 4, satisfying (3.15); therefore w|, = Eclﬁz,b,.
¢

We shall introduce some notation in order to define w in the interior of each triangle
fIl:. Let r := (I, f, Je,, Je,, Jt;) € R* and D := diag(|T, \—‘/-’5,%, —‘\/-12-), then n2 = r'D’r.
et

W .= {weH‘(T) : /w=|:r|2(n,f) and ], = 1 ‘J"z/;,, =12, 3}
T
WT is an affine subspace of H!(T) parallel to the subspace
KT .= {wEHl(T) : /w=0 and wl|, =0, ¢ = 1,2,3} .
T

Let wl € WT be such that

(4.4) /|Vw?|2= rmn /|Vw|
T

then w7 satisfies (3.14), (3.15) and (3.16) with a constant

T12 %
C = (SUPM)

r#£0 I‘"D21‘

To compute this constant we need to calculate [. |Vw3'|2 for any r € R*. Let us
remark that (4.4) holds if and only if wT € WT satisfies [. VwT - Vw =0, Vw € KT.

Let wo be the solution of the Dirichlet problem

—QAQwe=1, mmT,
(4.6) {

wolar =0,

/Vwo Vw—/w+/ Zow=0, VweKT,
aT an

For i = 1,2,3, let w,; be the solution of

then

—-Aw;i=0, inT,
(4.7) {

wi'['- = 'l’,_. ’ wilaT\(i =0 ’

13




then also

/vw,-.vw=/ O, =0, Ywe KT
T ar On

Hence,

3
€| e,
w?:c,wo +2Mw

c,,

with a constant ¢, such that [ wl = |T|? (11, f) is satisfied; that is:

1 2 lde [ |
Cp = 3 [IT' (HTf)—;——Cl_'_—/;wl] ’

fTIV“’0|

(we have used that, because of (4.6), [ [Vwol|? = Jwo).
Finally, because of (4.7), fT Vw; - Vwg = 0, and so

o= [ lo(s R N e, [
[Iva (= _ ) levol[ll(Tf)Zcb/T,],

=1 i
which is a quadratic form on r. Therefore, the computation of the constant C. by means of
(4.5) reduces to a simple eigenvalue problem which can be easily solved once the solutions
w; of the Dirichlet problems (4.6) and (4.7) are known. In our computations we have also
used the code PROBE to solve numerically these problems.

The function w € H}_ () obtained by patching together all the wl for T € T, gives
the best possible constants for each triangle for a given choice of the edge functions ¥,.
After some experimentation we choose ¥, as quadratic functions vanishing at both ends
of the edge. This choice gives constants satisfying for any triangle T"

(4.8) 3.45sin~? (a2 ) <C. <5 85sin~32 (%T_) :

where a. is the minimum angle of T. Once again, C’_ is almost proportional to sin”? (321)
and practically independent of the size of the othe angles of the triangle.

Finally, by using (4.3) and (4.8) and Theorems 3.3 and 3.5, we obtain

3 3
0.171 s1n%(2) e —C [hz(z |f|?’l‘) + hi (Z |9|f,e) j| <leh g

TeT Lel
(4.9)

1
< 0.813 logtp sin"3(3) na+lu—uply g+ € [h’(Z Iflf,T) + b (Z lglf.z) J ,

TeT tecl

Nl
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where a is the minimum angle of the mesh 7. The bounds (4.9) can be made more
accurate for specific values of the minimal angle a and of the degree p > 2; Table 4.1
shows values of the constants C, and C?, for the estimate

3 3
C, nn~0[h2<2|f|f,r) +ht (zlglf,,) ]smm

TeT LeL
3 \ 3
SChng+lu— “pll,n + C [#? (Z lflf,T) +h? (Z |9|31) )
TeT tel
for different values of a and p.
a C,, Cr?

p=2 p=4 p=~6 p=8

7.5° 0.051 2.390 3.306 3.660 3.988
15.0° 0.072 1.682 2.341 2.609 2.839
22.5° 0.087 1.363 1.918 2.156 2.343
30.0° 0.099 1.169 1.670 1.895 2.058
37.5° 0.108 1.035 1.508 1.727 1.876
45.0° 0.115 0.939 1.400 1.615 1.757
52.5° 0.119 0.875 1.334 1.547 1.684
60.0° 0.121 0.850 1.309 1.522 1.657

Table 4.1. Constants of equivalence.

5. Sharpness of the bounds. We shall analyize the sharpness of the estimates
obtained in the previous section by considering a simple example. In particular, we shall
show that the dependence of these bounds on the geometry of the mesh is optimal. '

Let us consider a particular case of problem (2.1) where €2 is a rectangle as in Figure
5.1, I'q consist of the two vertical edges of 2 and I'; of the horizontal ones; let f be a
constant and g = 0. The solution is a quadratic polynomial in z (and it does not depend
on y). Let 7T} be a family of uniform meshes like that in Figure 5.1.
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u=0 B\h u=290
T
du
5n =0
Figure 5.1

Since the solution is quadratic and the Neumann boundary conditions are zero, for any
of these meshes the finite element approximation is exact at the nodes. Therefore, it is
possible to compute explicitly the true error and the estimator. The error is the same for
all the triangles; it only depends on the meshsize h and on the angle 8 which measures the
regularity of the mesh (see Fig. 5.1). For all the elements disjoint with I'q the estimator
is also the same; for those elements with an edge £ on the boundary I'q, the estimator will
be smaller since, according to (2.3), the corresponding “jump” J¢ = 0. However, since the
proportion of the elements with an edge on I'q goes to zero when the mesh is refined, the

global effectivity index is in this case, asymptotically equal to the local one effr := -IE'T'T—T
1,

An explicit computation gives eff,? = 18cot3. Let a denote, as before, the smallest
angle of the mesh. If 3 < £ (as in Fig. 5.1), then a = 3 and it is simple to prove that for
this problem

(5.1) effy > 2.62sin"? (g-) :
On the other hand, if 3 > ¥, the smallest angle is « = 7 — § and in this case
int (2
(5.2) effr < 6.86sin (2) .
Since f and g are constant and u; coincides with u, then (4.9) gives for this problem:
it (2 (2
(5.3) 1.47sin (2) < eff < 5.84sin (2) .

The effectivity indexes (5.1) and (5.2) corresponding to different meshes show the sharpness
of the bounds in (5.3) and the optimality of the terms sint} (%) for their dependence on
the regularity of the mesh.
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6. The elasticity problem. We shall show how the techniques described above can
be applied to a different problem. Let us consider the 2D linear elastic equations; let 2, 'y,
T4, n, Ta, Ti, T and £ be as in Sections 2 and 3; let H} () := {v € H'(Q)?: vip, = 0}
be the space of admisssible displacements; let € and o : H'(2)? = R?*2 be the strain and
stress tensors defined by:

RN - A R
E'J(v) = 2 (axJ + 69:,-) ’ ,) = 1a2

and
2
(V) = A D exr(V)8ij + 2peii(v) , 4,5 =12,
k=1
where A and u are the Lame coefficients that depend on the Young modulus F and the
Poisson’s ratio v of the material:

Ev E 1
A= = =T ’ P
+o0-2) FTaa+y E>0 0<v<3

Given a body force f € L?(Q2)? and a prescribed traction g € L?(T,)? with components
locally smooth as described in Theorem 3.2, let u be the solution of the boundary value
problem:

—(A + p)V(divu) — pAu=f, inQ,
(6.1) u=0, only,
olum=g, onl,;

For v and w € H} (Q) let

2
a(v,w) ==/9.Z 0ij(v)eij(w) ;

1,j=1

a is a continuous symmetric bilinear form. By using Korn’s inequality (for instance, see

[20]), it is proved that a is coercive and so, the energy norm || - || := a(:, ')% is equivalent
to the usual Sobolev norm || - ||, o on Hy (). Problem (6.1) has a unique solution u €
H} (Q) and it satisfies the weak formulation of this problem:

(6.2) a(u,v)=/nf-v+’/r g-v, VveH] ().

Let uy € Vy, := {v € H} (Q) : v| € Pi(T)?, VT € T4} be the piecewise linear finite
element approximate solution of problem (6.2). Proceeding as in Section 2, it is proved
that the error e := u — u, satisfies the residual equation:

a(e,v):/ﬂf-v-{-/r [g—a(u;.)n]-v+Z/l[u(u)n],-v, Vv € H} (Q) .

LCT;
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For any triangle T € 7, and for any edge £ € Ty, let II.f and II,g be the local
projections of the data defined as before; let
fo(un},, ifecCr;,
Jo:={ 2{l,g - lo(u)n]l,} , ifeCTa,
0, ifécCrly,

and let

t€E,

1 2
1
e = [|T|2|n,f|’+§ ) m’wz} .

The proofs of the theorems in Section 3 can be immediately extended to this problem.
Let up € {v € Hi (Q):vir € Pp(T)?, VT € Th} be the approximate finite element solu-
tion of problem (6.2) in this space and, for any U C Q, let || - ||f, = Jy E?,J-:l gi;j(-)eij(+).

THEOREM 6.1. With the definitions and assumptions introduced above

3
+ Jlu - up”n

llellg < [ 3 (er)'n?
TET

-

3 3
(6.3) +C h’(z Iflf,T) +hi (Z lglf.e) ‘ ,
TeT tec
where
) ‘]'%'[ fT(V_vl)|2+%ZIGE I]%[ fz(v_"l)‘z
64) (C2)’:=  sup a

2
veP? : liviip#0 Iviiz

THEOREM 6.2. Let w € H} () be such that for all the triangles T € Ty,

/T (I £) - w = (TR,

> [aew= 3 ra

teE, teE,

and
BC'T >0 : ”W”T < C;nr ’
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where C. may depend on the shape of the triangle but not on its size h,.. Then

Na < (ﬁg}r)ﬁ C;) llellq + C h2(z lflf,:r) + B3 (Z |8'1 e)

TeT Lecl

O

The constants C? and C’ can be computed by techniques analogous to those in

Section 4. They depend very weakly on the Poisson’s ratio v. The values of C!, are almost

proportional to sin 2( ) (a; the minimum angle of T) as for the Laplace equation.

Instead, for any fixed degree P 2 2, our computations show that C? are almost proportional

to sin~? ( 321), the exponent --g- indicates a much stronger dependence on the regularity
of the mesh.

Remark 6.1. The increase of the factor sin_%(gf) to sin_%(g-zl) is due to the
constant in Korn’s inequality. Let us show it in the case that T is a triangle as that in
Figure 6.1.

Figure 6.1

In [22) it is shown that, for any function v € H'(T)?,

he\?,  [4h, h,
(65) e <Ca(%2) og (22) vig+ ca(22) Wi

where h; is the diameter of T, @ is the biggest circle contained in T and r is the length
of its radius (see Fig 6.1). The estimate (6.5) is optimal.

If Ivﬁ,q were used in the denominator of (6.4) instead of ||v||5, the term sin~% (3£)

would appear as in (4.3). On the other hand, for functions v € Pp(T)? with three degrees
of freedom fixed at the vertexes B,C (to avoid rigid motions),

v v
l JI,Q S I JI,Q S C3 ’
Mz = T3
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where é is the quadrilateral of vertexes B,C, D, E in Figure 6.1; the constant C; depends

on the regularity of Q (i.e.: on the quotient ‘ﬁ;"r'@), but not on the small angle a.,.. Since

for a, small,
a r

in(F) =5~

then, for these functions we have that %If is bounded by sin~! (9—’21'-) (neglecting in (6.5)
the logarithmic term). Therefore, since in (6.4) the supremum can be taken over these

functions ¥, we can expect C_  to be proportional to sin™3 (%,T-) a

The following table gives the values of the constants C!, and C? in the estimate

1 1
] 2
. ¢ |15 mf,T) e (z lguf,,) <lella
TeT el
b 3
SClng+llu—ulg+ C hz(z Iflf,T) +h’~‘(z lglf,,) ,
TeT Lel

in terms of the minimum angle «, for p = 2 and for different values of the Poisson’s ratio.

v=.15 v=.30 v=.45
o C, (074 C, C? C/ 1874

7.5° 0.042 31.34 0.038 30.31 0.022 28.48
15.0° 0.060 11.10 0.054 10.81 0.032 10.26
22.5° 0.075 6.05 0.066 5.96 0.040 5.74
30.0° 0.088 3.93 0.078 3.92 0.047 3.85
37.5° 0.100 2.81 0.089 2.84 0.054 2.85
45.0° 0.113 2.12 0.101 2.19 0.061 2.23
52.5° 0.125 1.67 0.113 1.75 0.069 1.82
60.0° 0.136 1.36 0.124 1.44 0.077 1.52

Table 6.1. Constants of equivalence for different Poisson’s ratios.

7. Conclusions and computational aspects..

1. The error estimator can either underestimate or overestimate the true error. If the
solution is unsmooth the accuracy of the estimator could deteriorate (but not drastically—
we have to consider a higher degree p in (3.12) and the deterioration is logarithmic)

2. The main factor in the accuracy of the estimator is the geometry of the elements.
The geometry (angle a) has to be understood in conection with the differential equation.
For example when an elliptic differential operator Zi,j=l,2 a,-jg% (aij constants) is
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considered, the equation can be transformed into the Laplace equation by an affine trans-
formation which will modify the angles of the triangles. The constants arising in this case
are those of the transformed mesh.

3. The accuracy of the estimator depends on the relation of the axes of anisotropy
of the solution (i.e.: the eigenvectors of its Hessian matrix) and the orientation of the
triangles. If the main axe and the orientation of the triangles are orthogonal, the error is
overestimated; instead, it is underestimated if they are parallel.

4. The estimates we derived are theoretical and they allow us to define corrcction
factors; for example, for the Laplace equation and a uniform mesh of equilateral triangles
we can use (from table 4.1) {/(0.121-0.850) ~ 0.32. If we rather needed a safe estimator
we should use a greater corrector factor (say 1.5).

5. For the elasticity equations, our estimates show a larger sensitivity with respect to
the minimal angle. This effect grows for larger Poisson’s ratio.

6. In practice, the bounds on the effectivity index are expected to be better than in
our theoretical analysis. However, (5.1) and (5.2) show that they cannot be much better
without additional restrictions. Of course, the examples yielding (5.1) and (5.2) are more
or less extreme cases. For a detailed computational analysis we refer to [4].
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